Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
РЕШУ ЦТ — физика
Вариант № 16726
1.  
i

Ука­жи­те еди­ни­цу из­ме­ре­ния, на­зван­ную в честь учёного:

1) тесла;
2) тонна;
3) метр;
4) ди­оп­трия;
5) се­кун­да.
2.  
i

Во время ис­пы­та­ния ав­то­мо­би­ля во­ди­тель под­дер­жи­вал по­сто­ян­ную ско­рость, зна­че­ние ко­то­рой ука­зы­ва­ет стрел­ка спи­до­мет­ра, изоб­ражённого на ри­сун­ке. Путь s  =  42 км ав­то­мо­биль про­ехал за про­ме­жу­ток вре­ме­ни \Delta t, рав­ный:

1) 16 мин
2) 19 мин
3) 22 мин
4) 25 мин
5) 28 мин
3.  
i

Если сред­няя пу­те­вая ско­рость дви­же­ния ав­то­мо­би­ля из пунк­та А в пункт Б \langle v \rangle = 18,0км/ч (см.рис.), то ав­то­мо­биль на­хо­дил­ся в пути в те­че­ние про­ме­жут­ка вре­ме­ни \Delta t рав­но­го:

 

При­ме­ча­ние: мас­штаб ука­зан на карте.

1) 100 с
2) 114 с
3) 125 с
4) 144 с
5) 200 с
4.  
i

Мо­дуль ско­ро­сти υ1 пер­во­го тела в два раза боль­ше мо­ду­ля ско­ро­сти дви­же­ния υ2 вто­ро­го тела. Если массы этих тел равны  левая круг­лая скоб­ка m_1 = m_2 пра­вая круг­лая скоб­ка , то от­но­ше­ние ки­не­ти­че­ской энер­гии пер­во­го тела к ки­не­ти­че­ской энер­гии вто­ро­го тела  дробь: чис­ли­тель: E_k1, зна­ме­на­тель: E_k2 конец дроби равно:

1) 1
2)  ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
3) 2
4) 4
5) 8
5.  
i

На дно водоёма с по­мо­щью троса рав­но­мер­но опус­ка­ют ка­мен­ную плиту (см. рис.). На­прав­ле­ние силы тре­ния сколь­же­ния, дей­ству­ю­щей на плиту, по­ка­за­но стрел­кой, обо­зна­чен­ной циф­рой:

1) 1
2) 2
3) 3
4) 4
5) 5
6.  
i

На ри­сун­ке изоб­ражён бру­сок, на­хо­дя­щий­ся на го­ри­зон­таль­ной по­верх­но­сти, в двух раз­лич­ных по­ло­же­ни­ях (1 и 2). Вы­бе­ри­те ва­ри­ант от­ве­та с пра­виль­ным со­от­но­ше­ни­ем мо­ду­лей сил F1 и F2 дав­ле­ния брус­ка на го­ри­зон­таль­ную по­верх­ность и дав­ле­ний р1 и р2 брус­ка на эту же по­верх­ность:

1) F_1=F_2, p_1=p_2;
2) F_1 мень­ше F_2, p_1=p_2;
3) F_1=F_2, p_1 боль­ше p_2;
4) F_1 боль­ше F_2, p_1=p_2;
5) F_1=F_2, p_1 мень­ше p_2.
7.  
i

Если тем­пе­ра­ту­ра тела из­ме­ни­лась на \Delta t = 60 гра­ду­совС , то из­ме­не­ние его аб­со­лют­ной тем­пе­ра­ту­ры \Delta T по шкале Кель­ви­на равно:

1)  дробь: чис­ли­тель: 273, зна­ме­на­тель: 60 конец дроби К
2)  дробь: чис­ли­тель: 60, зна­ме­на­тель: 273 конец дроби К
3) 60 К
4) 213 К
5) 333 К
8.  
i

Если при изо­хор­ном на­гре­ва­нии иде­аль­но­го газа, ко­ли­че­ство ве­ще­ства ко­то­ро­го по­сто­ян­но, дав­ле­ние газа уве­ли­чи­лось на Δp = 120 кПа, а аб­со­лют­ная тем­пе­ра­ту­ра воз­рос­ла в k = 2,00 раза, то дав­ле­ние p2 газа в ко­неч­ном со­сто­я­нии равно:

1) 180 кПа
2) 210 кПа
3) 240 кПа
4) 320 кПа
5) 360 кПа
9.  
i

В не­ко­то­ром про­цес­се над тер­мо­ди­на­ми­че­ской си­сте­мой внеш­ние силы со­вер­ши­ли ра­бо­ту А = 25 Дж, при этом внут­рен­няя энер­гия си­сте­мы уве­ли­чи­лась на \Delta U = 40 Дж. Ко­ли­че­ство теп­ло­ты Q, по­лу­чен­ное си­сте­мой, равно:

1) 0
2) 10 Дж
3) 15 Дж
4) 25 Дж
5) 35 Дж
10.  
i

В пас­пор­те энер­го­сбе­ре­га­ю­щей лампы при­ве­де­ны сле­ду­ю­щие тех­ни­че­ские ха­рак­те­ри­сти­ки:

1)  (220 − 240) В;     2) 90 мА;

3)  12 Вт;                 4) 2700 К;

5)  (50 − 60) Гц.

Па­ра­метр, ха­рак­те­ри­зу­ю­щий силу тока, ука­зан в стро­ке, номер ко­то­рой:

1) 1
2) 2
3) 3
4) 4
5) 5
11.  
i

=

То­чеч­ные за­ря­ды q1 и q2 на­хо­дят­ся в плос­ко­сти ри­сун­ка. На­прав­ле­ние на­пряжённо­сти \vecE элек­тро­ста­ти­че­ско­го поля, со­зда­ва­е­мо­го этими за­ря­да­ми в точке А, ука­за­но на ри­сун­ке. Для за­ря­дов q1 и q2 спра­вед­ли­вы со­от­но­ше­ния под но­ме­ром:

1) q1<0 , q2<0
2) q1>0 , q2>0
3) q1=0 , q2<0
4) q1>0 , q2<0
5) q1<0 , q2>0
12.  
i

На ри­сун­ке пред­став­лен гра­фик за­ви­си­мо­сти силы тока, про­хо­дя­ще­го через ни­хро­мо­вый (ρ = 1,0·10−6 Ом·м) про­вод­ник, от на­пря­же­ния на нем. Если пло­щадь по­пе­реч­но­го се­че­ния про­вод­ни­ка S = 2,0 мм2, то его длина l равна:

1) 1,0 м
2) 2,0 м
3) 3,0 м
4) 5,0 м
5) 8,0 м
13.  
i

Если в не­ко­то­рый мо­мент вре­ме­ни ско­рость \vecv в элек­тро­на лежит в плос­ко­сти ри­сун­ка и на­прав­ле­на вдоль линий ин­дук­ции од­но­род­но­го маг­нит­но­го поля (см. рис.), то элек­трон дви­жет­ся:

1) с по­сто­ян­ным уско­ре­ни­ем пря­мо­ли­ней­но;
2) с по­сто­ян­ным уско­ре­ни­ем по па­ра­бо­ле, ле­жа­щей в плос­ко­сти ри­сун­ка;
3) рав­но­мер­но и пря­мо­ли­ней­но;
4) рав­но­мер­но по окруж­но­сти, плос­кость ко­то­рой пер­пен­ди­ку­ляр­на ли­ни­ям маг­нит­ной ин­дук­ции;
5) рав­но­мер­но по окруж­но­сти, плос­кость ко­то­рой па­рал­лель­на ли­ни­ям маг­нит­ной ин­дук­ции.
14.  
i

Сила тока в ка­туш­ке ин­дук­тив­но­сти рав­но­мер­но умень­ши­лась от I1 = 10 А до I2 = 5,0 А за про­ме­жу­ток вре­ме­ни \Delta t = 0,50с. Если при этом в ка­туш­ке воз­ник­ла ЭДС са­мо­ин­дук­ции  эп­си­лон = 25 В,то ин­дук­тив­ность L ка­туш­ки равна:

1) 1,5 Гн
2) 2,5 Гн
3) 3,5 Гн
4) 4,5 Гн
5) 5,5 Гн
15.  
i

Рас­сто­я­ние от мни­мо­го изоб­ра­же­ния дей­стви­тель­но­го пред­ме­та, по­лу­чен­но­го с по­мо­щью тон­кой со­би­ра­ю­щей линзы, до ее глав­ной плос­ко­сти в α = 3 раза боль­ше фо­кус­но­го рас­сто­я­ния. Ли­ней­ное (по­пе­реч­ное) уве­ли­че­ние Г линзы равно:

1) 2
2) 3
3) 4
4) 5
5) 6
16.  
i

Если фо­то­ток пре­кра­ща­ет­ся при за­дер­жи­ва­ю­щем на­пря­же­нии Uз  =  2,25 В, то мо­дуль мак­си­маль­ной ско­ро­сти υmax фо­то­элек­тро­нов равен:

1) 9,7 · 105 м/c
2) 8,9 · 105 м/c
3) 7,4 · 105 м/c
4) 6,2 · 105 м/c
5) 4,5 · 105 м/c
17.  
i

На тон­кую со­би­ра­ю­щую линзу с глав­ным фо­ку­сом F па­да­ет рас­хо­дя­щий­ся пучок света, огра­ни­чен­ный лу­ча­ми 1 и 2. Про­шед­ший через линзу пучок света пра­виль­но изоб­ра­жен на ри­сун­ке, обо­зна­чен­ном циф­рой:

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

1) 1
2) 2
3) 3
4) 4
5) 5
18.  
i

На ри­сун­ке изоб­ра­же­ны два зер­ка­ла, угол между плос­ко­стя­ми ко­то­рых  бета = 95°. Если угол па­де­ния све­то­во­го луча АО на пер­вое зер­ка­ло  альфа = 55°, то угол от­ра­же­ния \ghama этого луча от вто­ро­го зер­ка­ла равен:

При­ме­ча­ние. Па­да­ю­щий луч лежит в плос­ко­сти ри­сун­ка.

1) 25 гра­ду­сов
2) 40 гра­ду­сов
3) 75 гра­ду­сов
4) 90 гра­ду­сов
5) 105 гра­ду­сов
19.  
i

Лег­ко­вой ав­то­мо­биль дви­жет­ся по шоссе со ско­ро­стью, мо­дуль ко­то­рой  v = 15 дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби . Вне­зап­но на до­ро­гу вы­ско­чил лось. Если время ре­ак­ции во­ди­те­ля t = 0,95 с, а мо­дуль уско­ре­ния ав­то­мо­би­ля при тор­мо­же­нии а = 6,0 дробь: чис­ли­тель: м, зна­ме­на­тель: с в квад­ра­те конец дроби , то оста­но­воч­ный путь s (с мо­мен­та воз­ник­но­ве­ния пре­пят­ствия до пол­ной оста­нов­ки) равен ... м.

20.  
i

Не­боль­шое тело мас­сой m1  =  3,0 кг дви­жет­ся на вы­со­те H  =  2,5 м от го­ри­зон­таль­ной по­верх­но­сти. На по­верх­но­сти лежит од­но­род­ный шар диа­мет­ром D  =  1,0 м и мас­сой m2  =  1,5 т. Когда тело будет на­хо­дить­ся над цен­тром шара, мо­дуль силы F гра­ви­та­ци­он­но­го при­тя­же­ния, дей­ству­ю­щей на тело со сто­ро­ны шара, будет равен ... нН.

21.  
i

Трак­тор при вспаш­ке го­ри­зон­таль­но­го участ­ка поля дви­гал­ся рав­но­мер­но со ско­ро­стью, мо­дуль ко­то­рой  v = 7,2км/ч , и за про­ме­жу­ток вре­ме­ни Δt = 0,50 ч из­рас­хо­до­вал топ­ли­во мас­сой m = 5,4 кг. Если мо­дуль силы тяги трак­то­ра F = 15 кН, а ко­эф­фи­ци­ент по­лез­но­го дей­ствия трак­то­ра \eta = 27 %, то удель­ная теп­ло­та сго­ра­ния q топ­ли­ва равна ... МДж/кг.

22.  
i

С вы­со­ты H  =  50 см из со­сто­я­ния покоя ма­лень­кий бру­сок на­чи­на­ет со­скаль­зы­вать по глад­кой по­верх­но­сти, плав­но пе­ре­хо­дя­щей в по­лу­ци­линдр ра­ди­у­сом R  =  26 см (см. рис.). Если тра­ек­то­рия дви­же­ния брус­ка лежит в вер­ти­каль­ной плос­ко­сти, то вы­со­та h, на ко­то­рой бру­сок оторвётся от внут­рен­ней по­верх­но­сти по­лу­ци­лин­дра, равна ... см.

23.  
i

В вер­ти­каль­но рас­по­ло­жен­ном ци­лин­дре под лег­ко­по­движ­ным порш­нем, масса ко­то­ро­го m = 3,00 кг, а пло­щадь по­пе­реч­но­го се­че­ния S = 15,0 см2, со­дер­жит­ся иде­аль­ный газ (см. рис.). Ци­линдр на­хо­дит­ся в воз­ду­хе, ат­мо­сфер­ное дав­ле­ние ко­то­ро­го p0 = 100 кПа. Если на­чаль­ная тем­пе­ра­ту­ра газа и объем T1 = 280 К и V1 = 2,00 л со­от­вет­ствен­но, а при изо­бар­ном охла­жде­нии из­ме­не­ние его тем­пе­ра­ту­ры ΔT = -140 К, то ра­бо­та Aвн, со­вер­шен­ная внеш­ни­ми си­ла­ми, равна ... Дж.

24.  
i

Не­боль­шой пузырёк воз­ду­ха мед­лен­но под­ни­ма­ет­ся вверх со дна водоёма. На глу­би­не h1 = 81 м тем­пе­ра­ту­ра воды  левая круг­лая скоб­ка \rho = 1,0 дробь: чис­ли­тель: г, зна­ме­на­тель: см в кубе конец дроби пра­вая круг­лая скоб­ка t_1 = 7,0 гра­ду­совС, на пу­зы­рек дей­ству­ет вы­тал­ки­ва­ю­щая сила \vecF_1. На глу­би­не h2 = 13 м, где тем­пе­ра­ту­ра воды t_1 = 17 гра­ду­совС, на пу­зы­рек дей­ству­ет вы­тал­ки­ва­ю­щая сила, мо­дуль ко­то­рой F2 = 82 мН. Если ат­мо­сфер­ное дав­ле­ние p_0 = 1,0 умно­жить на 10 в сте­пе­ни 5 Па, то мо­дуль вы­тал­ки­ва­ю­щей силы \vecF_1 равен … мН.

25.  
i

При изо­бар­ном на­гре­ва­нии иде­аль­но­го од­но­атом­но­го газа, ко­ли­че­ство ве­ще­ства ко­то­ро­го \nu = 9 моль, объем газа уве­ли­чил­ся в k = 2,0 раза. Если на­чаль­ная тем­пе­ра­ту­ра газа t_1=27 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка C, то газу было пе­ре­да­но ко­ли­че­ство теп­ло­ты Q, рав­ное ... кДж.

26.  
i

Из ядер­но­го ре­ак­то­ра из­влек­ли об­ра­зец, со­дер­жа­щий ра­дио­ак­тив­ный изо­топ с пе­ри­о­дом по­лу­рас­па­да T1/2  =  8,0 суток. Если на­чаль­ная масса изо­то­па, со­дер­жа­ще­го­ся в об­раз­це, m0  =  160 мг, то через про­ме­жу­ток вре­ме­ни Δt  =  24 суток масса m изо­то­па в об­раз­це будет равна ... мг.

27.  
i

Элек­три­че­ская цепь со­сто­ит из ис­точ­ни­ка по­сто­ян­но­го тока с ЭДС  эп­си­лон = 120 В и с внут­рен­ним со­про­тив­ле­ни­ем r = 2,0 Ом, кон­ден­са­то­ра ёмко­стью С = 0,60 мкФ и двух ре­зи­сто­ров (см. рис.). Если со­про­тив­ле­ния ре­зи­сто­ров R1 = R2 = 5,0 Ом, то заряд q кон­ден­са­то­ра равен ... мкКл.

28.  
i

В од­но­род­ном маг­нит­ном поле, мо­дуль маг­нит­ной ин­дук­ции ко­то­ро­го В = 0,2 Тл, на двух не­ве­со­мых не­рас­тя­жи­мых нитях под­ве­шен в го­ри­зон­таль­ном по­ло­же­нии пря­мой про­вод­ник дли­ной l  =  0,5 м (см. рис.). Линии ин­дук­ции маг­нит­но­го поля го­ри­зон­таль­ны и пер­пен­ди­ку­ляр­ны про­вод­ни­ку. После того как по про­вод­ни­ку пошёл ток, мо­дуль силы на­тя­же­ния Fн каж­дой нити уве­ли­чил­ся в три раза. Если масса про­вод­ни­ка m = 10 г, то сила тока I равна … А.

29.  
i

На дне со­су­да с жид­ко­стью, аб­со­лют­ный по­ка­за­тель пре­лом­ле­ния ко­то­рой n = 1,50, на­хо­дит­ся то­чеч­ный ис­точ­ник света. Если пло­щадь круга, в пре­де­лах ко­то­ро­го воз­мо­жен выход лучей от ис­точ­ни­ка через по­верх­ность жид­ко­сти, S = 740 см2, то вы­со­та h жид­ко­сти в со­су­де равна ... мм. Ответ округ­ли­те до целых.

30.  
i

Ма­лень­кая заряжённая бу­син­ка мас­сой m = 1,2 г может сво­бод­но сколь­зить по оси, про­хо­дя­щей через центр тон­ко­го не­за­креплённого коль­ца пер­пен­ди­ку­ляр­но его плос­ко­сти. По коль­цу, масса ко­то­ро­го М = 3,0 г и ра­ди­ус R = 35 см, рав­но­мер­но рас­пре­делён заряд Q = 3,0 мкКл. В на­чаль­ный мо­мент вре­ме­ни коль­цо по­ко­и­лось, а бу­син­ке, на­хо­дя­щей­ся на боль­шом рас­сто­я­нии от коль­ца, со­об­щи­ли ско­рость, мо­дуль ко­то­рой  v _0 = 1,8 дробь: чис­ли­тель: м, зна­ме­на­тель: с конец дроби . Мак­си­маль­ный заряд бу­син­ки qmax, при ко­то­ром она смо­жет про­ле­теть сквозь коль­цо, равен … нКл.

31.  
i

Стрел­ка AB вы­со­той H  =  4,0 см и её изоб­ра­же­ние A1B1 вы­со­той h  =  2,0 см, фор­ми­ру­е­мое тон­кой лин­зой, пер­пен­ди­ку­ляр­ны глав­ной оп­ти­че­ской оси N1N2 линзы (см. рис.). Если рас­сто­я­ние между стрел­кой и её изоб­ра­же­ни­ем AA1  =  16 см, то мо­дуль фо­кус­но­го рас­сто­я­ния |F| линзы равен ... см.

32.  
i

Для ис­сле­до­ва­ния лим­фо­то­ка па­ци­ен­ту ввели пре­па­рат, со­дер­жа­щий N0  =  80 000 ядер ра­дио­ак­тив­но­го изо­то­па зо­ло­та { в сте­пе­ни левая круг­лая скоб­ка 198 пра­вая круг­лая скоб­ка _79Au. Если пе­ри­од по­лу­рас­па­да этого изо­то­па T_ дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби =2,7сут., то за про­ме­жу­ток вре­ме­ни \Delta t=8,1сут. рас­падётся ... тысяч ядер { в сте­пе­ни левая круг­лая скоб­ка 198 пра­вая круг­лая скоб­ка _79Au.